El titanio es un metal relativamente ligero (densidad de 4.54 g/cm3), altamente reactivo y que presenta una transformación alotrópica de una estructura hexagonal densa a temperatura ambiente a una estructura c.c. (b) a 883°C.
El titanio es un metal caro, precisamente por su elevada reactividad, debido a su dificultad de extracción y transformación. A elevadas temperaturas se combina fácilmente con el oxígeno, nitrógeno, hidrógeno, carbono y hierro, por lo que es necesario la aplicación de técnicas de vacío durante su conformado. No obstante su elevada reactividad, el óxido obtenido es muy estable, por lo que puede utilizarse el titanio y sus aleaciones, una vez pasivado, en aplicaciones de resistencia a la corrosión en ambientes agresivos como ambientes marinos y soluciones cloruradas.
La resistencia del titanio es muy elevada, 684 MPa para el Ti de pureza 99.0%, por lo que tanto el Ti como sus aleaciones pueden competir favorablemente con las aleaciones de Al para algunas aplicaciones aerospaciales, a pesar de su mayor precio, alrededor de unas 5.7 veces superior.
La adición de elementos de aleación modifica la temperatura de transformación alotrópica del titanio, pudiendo dividir las aleaciones en cuatro grupos diferentes. La adición de estaño produce un endurecimiento por solución sólida sin afectar apreciablemente la temperatura de transformación. El aluminio, el oxígeno, el hidrógeno y otros elementos estabilizan la fase a, incrementando la temperatura a la cual a se transforma en b. Elementos como el vanadio, tántalo, molibdeno y niobio, estabilizan por el contrario la fase b, haciendo incluso que la fase b sea estable a temperatura ambiente. Finalmente, el manganeso, cromo y hierro, presentan diagramas con transformación eutectoide, reduciendo la temperatura a la cual sucede la transformación a ® b, y produciendo la estructura bifásica, por la transformación eutectoide, a temperatura ambiente.
El titanio es un metal caro, precisamente por su elevada reactividad, debido a su dificultad de extracción y transformación. A elevadas temperaturas se combina fácilmente con el oxígeno, nitrógeno, hidrógeno, carbono y hierro, por lo que es necesario la aplicación de técnicas de vacío durante su conformado. No obstante su elevada reactividad, el óxido obtenido es muy estable, por lo que puede utilizarse el titanio y sus aleaciones, una vez pasivado, en aplicaciones de resistencia a la corrosión en ambientes agresivos como ambientes marinos y soluciones cloruradas.
La resistencia del titanio es muy elevada, 684 MPa para el Ti de pureza 99.0%, por lo que tanto el Ti como sus aleaciones pueden competir favorablemente con las aleaciones de Al para algunas aplicaciones aerospaciales, a pesar de su mayor precio, alrededor de unas 5.7 veces superior.
La adición de elementos de aleación modifica la temperatura de transformación alotrópica del titanio, pudiendo dividir las aleaciones en cuatro grupos diferentes. La adición de estaño produce un endurecimiento por solución sólida sin afectar apreciablemente la temperatura de transformación. El aluminio, el oxígeno, el hidrógeno y otros elementos estabilizan la fase a, incrementando la temperatura a la cual a se transforma en b. Elementos como el vanadio, tántalo, molibdeno y niobio, estabilizan por el contrario la fase b, haciendo incluso que la fase b sea estable a temperatura ambiente. Finalmente, el manganeso, cromo y hierro, presentan diagramas con transformación eutectoide, reduciendo la temperatura a la cual sucede la transformación a ® b, y produciendo la estructura bifásica, por la transformación eutectoide, a temperatura ambiente.
No hay comentarios.:
Publicar un comentario